B.Tech III Year I Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA 19ABS22-NUMBER THEORY

(Open Elective -I)

L T P C 3 0 0 3

Course Objectives: This course aims at providing the basic knowledge

- To understand basic concepts of Number theory and
- To analyze the applications of Riemann Zeta Function and Dirichlet L Function of Number theory related to real word problems of engineering, biological science etc.

UNIT – 1: Divisibility and Primes & Congruences Divisibility and Primes:

9 Hrs

Division algorithm, Euclid's algorithm for the greatest common divisor- Linear Diophantine equations - Prime numbers, fundamental theorem of arithmetic, infinitude of primes- Distribution of primes, twin primes, Goldbach conjecture - Fermat and Mersenne primes - Primality testing and factorization. **Congruences**:

Modular arithmetic- Linear congruences- Simultaneous linear congruences, Chinese Remainder Theorem- An extension of Chinese Remainder Theorem (with non-coprime moduli).

Learning Outcomes:

At the end of this unit, the student will be able to

• Learn Division algorithm, Euclid's algorithm etc.

L2

 Analyze linear congruences- Simultaneous linear congruences, and Chinese Remainder Theorem.

L3

UNIT – II: Congruences with a Prime-Power Modulus, Euler's Function and RSA Cryptosystem, and Units Modulo an Integer

Congruences with a Prime-Power Modulus:

Arithmetic modulo p, Fermat's little theorem, Wilson's theorem - Pseudo-primes and Carmichael numbers- Solving congruences modulo prime powers.

Euler's Function and RSA Cryptosystem:

Definition of Euler function, examples and properties - Multiplicative property of Euler's function - RSA cryptography.

Units Modulo an Integer:

The group of units modulo an integer, primitive roots- Existence of primitive roots.

Learning Outcomes:

At the end of this unit, the student will be able to

Analyze the Congruences with a Prime-Power Modulus

L3

• Analyze the Euler's Function, RSA Cryptosystem and Units Modulo an Integer

L4

UNIT - III: Quadratic Residues and Quadratic Forms

Quadratic residues, Legendre symbol, Euler's criterion- Gauss lemma, law of quadratic reciprocity-Quadratic residues for prime-power moduli and arbitrary moduli- Binary quadratic forms, equivalent forms- Discriminant, principal forms, positive definite forms, indefinite forms- Representation of a number by a form, examples- Reduction of positive definite forms, reduced forms- Number of proper representations, automorph, class number.

Learning Outcomes:

At the end of this unit, the student will be able to

Analyze the Quadratic residues

L3

• Analyze the Quadratic Forms

L4

Mary

UNIT - IV: Sum of Powers, Continued Fractions and Pell's Equation

Sum of Powers:

Sum of two squares, sum of three squares, Waring's problem- Sum of four squares-Fermat's Last Theorem.

Continued Fractions and Pell's Equation:

Finite continued fractions, recurrence relation, Euler's rule- Convergents, infinite continued fractions, representation of irrational numbers- Periodic continued fractions and quadratic irrationals- Solution of Pell's equation by continued fractions.

Learning Outcomes:

At the end of this unit, the student will be able to

- Compute sum of powers and learn Fermat's last theorem.
 Solve Pell's equation by continued fractions
 L4
- Solve Fell's equation by continued fractions

UNIT – V: Arithmetic Functions, The Riemann Zeta Function and Dirichlet L Function Arithmetic Functions:

Definition and examples, multiplicative functions and their properties- Perfect numbers, Mobius function and its properties- Mobius inversion formula- Convolution of arithmetic functions.

The Riemann Zeta Function and Dirichlet L Function:

Historical background for the Riemann Zeta function, Euler product formula, convergence. - Applications to prime numbers- Dirichlet L-functions, Products of two Dirichlet L functions, Euler product formula.

Learning Outcomes:

At the end of this unit, the student will be able to

Analyze the arithmetic functions
 Analyze the Riemann Zeta function and its Applications to prime numbers
 L4

Text Books:

- 1. G. A. Jones & J.M. Jones, Elementary Number Theory, Springer UTM, 2007.
- 2. Niven, H. S. Zuckerman & H.L. Montgomery, Introduction to the Theory of Numbers, Wiley, 2000.
- 3. D. Burton; Elementary Number Theory, McGraw-Hill, 2005

Reference Books:

- 1. Tom M. Apostol, Introduction to Analytical Number theory, Narosa Publishing house, 1998.
- 2. Elementary number theory and its applications, BEL laboratories.

Course Outcomes:

At the end of this Course the student will be able to

Understand the basic concepts such as Learn Division algorithm, Euclid's algorithm etc.
 Analyze the Congruences with a Prime-Power Modulus and RSA Cryptosystem.
 Analyze the Quadratic residues and Quadratic forms.
 Solve Pell's equation by continued fractions
 Analyze the real word problem through the technique of Number theory.

**** Herary